Makalah Besaran Satuan dan Hukum Newton

Bookmark and Share


BESARAN
1.      Pengertian Besaran
Besaran adalah segala sesuatu yang dapat diukur atau dihitung, dinyatakan dengan angka dan mempunyai satuan. Dari pengertian ini dapat diartikan bahwa sesuatu itu dapat dikatakan sebagai besaran harus mempunyai 3 syarat yaitu
  1. Dapat diukur atau dihitung
  2. Dapat dinyatakan dengan angka-angka atau mempunyai nilai
  3. Mempunyai satuan
Bila ada satu saja dari syarat tersebut diatas tidak dipenuhi maka sesuatu itu tidak dapat dikatakan sebagai besaran.
Besaran berdasarkan cara memperolehnya dapat dikelompokkan menjadi 2 macam yaitu :

  1. Besaran Fisika yaitu besaran yang diperoleh dari pengukuran. Karena diperoleh dari pengukuran maka harus ada alat ukurnya. Sebagai contoh adalah massa. Massa merupakan besaran fisika karena massa dapat diukur dengan menggunakan neraca.
  2. Besaran non Fisika yaitu besaran yang diperoleh dari penghitungan. Dalam hal ini tidak diperlukan alat ukur tetapi alat hitung sebagai misal kalkulator. Contoh besaran non fisika adalah Jumlah.
Besaran Fisika sendiri dibagi menjadi 2
  1. Besaran Pokok adalah besaran yang ditentukan lebih dulu berdasarkan kesepatan para ahli fisika. Besaran pokok yang paling umum ada 7 macam yaitu Panjang (m), Massa (kg), Waktu (s), Suhu (K), Kuat Arus Listrik (A), Intensitas Cahaya (cd), dan Jumlah Zat (mol). Besaran pokok mempunyai ciri khusus antara lain diperoleh dari pengukuran langsung, mempunyai satu satuan (tidak satuan ganda), dan ditetapkan terlebih dahulu.
  2. Besaran Turunan adalah besaran yang diturunkan dari besaran pokok. Besaran ini ada banyak macamnya sebagai contoh gaya (N) diturunkan dari besaran pokok massa, panjang dan waktu. Volume (meter kubik) diturunkan dari besaran pokok panjang, dan lain-lain. Besaran turunan mempunyai ciri khusus antara lain : diperoleh dari pengukuran langsung dan tidak langsung, mempunyai satuan lebih dari satu dan diturunkan dari besaran pokok.
Saat membahas bab Besaran dan Satuan maka kita tidak akan lepas dari satu kegiatan yaitu pengukuran. Pengukuran merupakan kegiatan membandingkan suatu besaran dengan besaran sejenis yang ditetapkan sebagai satuan.




Contoh Soal:

1.    Diantara kelompok besaran berikut, yang termasuk kelompok besaran pokok dalam   system Internasional adalah ….
A. Panjang, luas, waktu, jumlah zat
B. Kuat arus, intersitas cahaya, suhu, waktu
C. Volume, suhu, massa, kuat arus
D. Kuat arus, panjang, massa, tekanan
E. Intensitas cahaya, kecepatan, percepatan, waktu

Jawab: B
SATUAN
1.      Pengertian Satuan
Satuan didefinisikan sebagai pembanding dalam suatu pengukuran besaran. Setiap besaran mempunyai satuan masing-masing, tidak mungkin dalam 2 besaran yang berbeda mempunyai satuan yang sama. Apa bila ada dua besaran berbeda kemudian mempunyai satuan sama maka besaran itu pada hakekatnya adalah sama. Sebagai contoh Gaya (F) mempunyai satuan Newton dan Berat (w) mempunyai satuan Newton. Besaran ini kelihatannya berbeda tetapi sesungguhnya besaran ini sama yaitu besaran turunan gaya.
Besaran berdasarkan arah dapat dibedakan menjadi 2 macam
  1. Besaran vektor adalah besaran yang mempunyai nilai dan arah sebagai contoh besaran kecepatan, percepatan dan lain-lain.
  2. Besaran sekalar adalah besaranyang mempunyai nilai saja sebagai contoh kelajuan, perlajuan dan lain-lain.
Contoh Soal:
1.    Dibawah ini adalah satuan dari waktu, kecuali …

A.    Meter                                                   
B.     Detik
  1. Menit                                                   
  2. Sekon
Jawab: A


GERAK
1.      Pengertian Gerak
Gerak adalah perubahan posisi suatu benda terhadap titik acuan. Titik acuan sendiri didefinisikan sebagai titik awal atau titik tempat pengamat. Gerak bersifat relatif artinya gerak suatu benda sangat bergantung pada titik acuannya. Benda yang bergerak dapat dikatakan tidak bergerak, sebgai contoh meja yang ada dibumi pasti dikatakan tidak bergerak oleh manusia yang ada dibumi. Tetapi bila matahari yang melihat maka meja tersebut bergerak bersama bumi mengelilingi matahari.
Contoh lain gerak relatif adalah B menggedong A dan C diam melihat B berjalan menjauhi C. Menurut C maka A dan B bergerak karena ada perubahan posisi keduanya terhadap C. Sedangkan menurut B adalah A tidak bergerak karena tidak ada perubahan posisi A terhadap B. Disinilah letak kerelatifan gerak. Benda A yang dikatakan bergerak oleh C ternyata dikatakan tidak bergerak oleh B. Lain lagi menurut A dan B maka C telah melakukan gerak semu.
Gerak semu adalah benda yang diam tetapi seolah-olah bergerak karena gerakan pengamat. Contoh yang sering kita jumpai dalam kehidupan sehari-hari adalah ketika kita naik mobil yang berjalan maka pohon yang ada dipinggir jalan kelihatan bergerak. Ini berarti pohon telah melakukan gerak semu. Gerakan semu pohon ini disebabkan karena kita yang melihat sambil bergerak.
2.      Pembagian Gerak
Bedasarkan lintasannya gerak dibagi menjadi 3
  1. Gerak lurus yaitu gerak yang lintasannya berbentuk lurus
  2. Gerak parabola yaitu gerak yang lintasannya berbentuk parabola
  3. Gerak melingkar yaitu gerak yang lintasannya berbentuk lingkaran
Sedangkan berdasarkan percepatannya gerak dibagi menjadi 2
  1. Gerak beraturan adalah gerak yang percepatannya sama dengan nol (a = 0) atau gerak yang kecepatannya konstan.
  2. Gerak berubah beraturan adalah gerak yang percepatannya konstan (a = konstan) atau gerak yang kecepatannya berubah secara teratur
Gerak lurus sendiri dibagi menjadi 2 :
1. Gerak Lurus Beraturan (GLB)
adalah gerak gerak benda yang lintasannya lurus dan kecepatannya konstan (tetap). Contoh gerak GLB adalah mobil yang bergerak pada jalan lurus dan berkecepatan tetap.

Persamaan yang digunakan pada GLB adalah sebagai berikut :
s = v.t
Keterangan :
s adalah jarak atau perpindahan (m)
v adalah kelajuan atau kecepatan (m/s)
t adalah waktu yang dibutuhkan (s)

Sebelum lebih lanjut membahas tentang gerak terlebih dahulu kita bahas tentang perbedaan perpindahan dan jarak tempuh.
Perpindahan adalah besarnya jarak yang diukur dari titik awal menuju titik akhir sedangkan Jarak tempuh adalah Panjang lintasan yang ditempuh benda selama bergerak.
Perhatikan gambar dibawah ini
Perpindahan
Sebuah benda bergerak dari A menuju B kemudian dia kembali ke C. Pada peristiwa di atas Pepindahannya adalah AB – BC = 200 m – 90 m = 110 m. Sedangkan jarak yang ditempuh adalah AB + BC = 200 m + 90 m = 290 m.
Apabila perpindahan dan jarak itu berbeda maka antara kecepatan dan kelajuan juga berbeda.
Kecepatan didefinisikan sebagai besarnya perpindahan tiap satuan waktu dan Kelajuan didefinisikan sebagai besarnya jarak yang ditempuh tiap satuan waktu. Perumusan yang digunakan pada kecepatan dan kelajuan adalah sama.
Karena dalam hal ini yang kita bahas adalah gerak lurus maka besarnya perpindahan dan jarak yang ditempuh adalah sama. Berdasarkan pada alasan ini maka untuk sementara supaya mudah dalam membahas, kecepatan dan kelajuan dianggap sama.
Pada pembahasan GLB ada juga yang disebut dengan kecepatan rata-rata. Kecepatan rata-rata didefinisikan besarnya perpindahan yang ditempuh dibagi dengan jumlah waktu yang diperlukan selama benda bergerak.
v rata-rata = Jumlah jarak atau perpindahan / jumlah waktu
Karena dalam kehidupan sehari-hari tidak memungkinkan adanya gerak lurus beraturan maka diambillah kecepatan rata-rata untuk menentukan kecepatan pada gerak lurus beraturan.
2. Gerak Lurus Berubah Beraturan (GLBB)
Adalah gerak lintasannya lurus dengan percepatan tetap dan kecepatan yang berubah secara teratur. Contoh GLBB adalah gerak buah jatuh dari pohonnya, gerak benda dilempar ke atas.
GLBB dibagi menjadi 2 macam :
a. GLBB dipercepat
Adalah GLBB yang kecepatannya makin lama makin cepat, contoh GLBB dipercepat adalah gerak buah jatuh dari pohonnya.
Grafik hubungan antara v terhadap t pada GLBB dipercepat adalah
Grafik v - t
Sedangkan Grafik hubungan antara s terhadap t pada GLBB dipercepat
Grafik s - t
b. GLBB diperlambat
Adalah GLBB yang kecepatannya makin lama makin kecil (lambat). Contoh GLBB diperlambat adalah gerak benda dilempar keatas.
Grafik hubungan antara v terhadap t pada GLBB diperlambat
Grafik v -t GLBB diperlambat
Grafik hubungan antara s terhadap t pada GLBB diperlambat
Grafik s - t diperlambat
Persamaan yang digunakan dalam GLBB sebagai berikut :
Untuk menentukan kecepatan akhir
V akhir
Untuk menentukan jarak yang ditempuh setelah t detik adalah sebagai berikut:
Rumus Jarak
Yang perlu diperhatikan dalam menggunakan persamaan diatas adalah saat GLBB dipercepat tanda yang digunakan adalah + .
Untuk GLBB diperlambat tanda yang digunakan adalah - , catatan penting disini adalah nilai percepatan (a) yang dimasukkan pada GLBB diperlambat bernilai positif karena dirumusnya sudah menggunakan tanda negatif.


Contoh Soal:
1.    Batu bermassa 200 gram dilempar lurus ke atas dengan kecepatan awal 50 m/s.

http://fisikastudycenter.files.wordpress.com/2010/12/uh10glbglbbintr2.gif

Jika percepatan gravitasi ditempat tersebut adalah 10 m/s2, dan gesekan udara diabaikan, tentukan :
a) Tinggi maksimum yang bisa dicapai batu
b) Waktu yang diperlukan batu untuk mencapai ketinggian maksimum
c) Lama batu berada diudara sebelum kemudian jatuh ke tanah

Pembahasan

a) Saat batu berada di titik tertinggi, kecepatan batu adalah nol dan percepatan yang digunakan adalah percepatan gravitasi.  Dengan rumus GLBB:

http://fisikastudycenter.files.wordpress.com/2010/12/p10glbglbb1a.gif

b) Waktu yang diperlukan batu untuk mencapai titik tertinggi:

http://fisikastudycenter.files.wordpress.com/2010/12/p10glbglbb1b.gif

c) Lama batu berada di udara adalah dua kali lama waktu yang diperlukan untuk mencapai titik tertinggi.

t = (2)(5) = 10 sekon



HUKUM NEWTON
Hukum Newton diterapkan pada benda yang dianggap sebagai partikel, dalam evaluasi pergerakan misalnya, panjang benda tidak dihiraukan, karena obyek yang dihitung dapat dianggap kecil, relatif terhadap jarak yang ditempuh. Perubahan bentuk (deformasi) dan rotasi dari suatu obyek juga tidak diperhitungkan dalam analisisnya. Maka sebuah planet dapat dianggap sebagai suatu titik atau partikel untuk dianalisa gerakan orbitnya mengelilingi sebuah bintang.
Dalam bentuk aslinya, hukum gerak Newton tidaklah cukup untuk menghitung gerakan dari obyek yang bisa berubah bentuk (benda tidak padat). Leonard Euler pada tahun 1750 memperkenalkan generalisasi hukum gerak Newton untuk benda padat yang disebut hukum gerak Euler, yang dalam perkembangannya juga dapat digunakan untuk benda tidak padat. Jika setiap benda dapat direpresentasikan sebagai sekumpulan partikel-partikel yang berbeda, dan tiap-tiap partikel mengikuti hukum gerak Newton, maka hukum-hukum Euler dapat diturunkan dari hukum-hukum Newton. Hukum Euler dapat dianggap sebagai aksioma dalam menjelaskan gerakan dari benda yang memiliki dimensi. Ketika kecepatan mendekati kecepatan cahaya, efek dari relativitas khusus harus diperhitungkan.
Hukum pertama Newton
Hukum I: Setiap benda akan mempertahankan keadaan diam atau bergerak lurus beraturan, kecuali ada gaya yang bekerja untuk mengubahnya.
Hukum ini menyatakan bahwa jika resultan gaya (jumlah vektor dari semua gaya yang bekerja pada benda) bernilai nol, maka kecepatan benda tersebut konstan. Dirumuskan secara matematis menjadi:
\sum \mathbf{F} = 0 \Rightarrow \frac{d \mathbf{v} }{dt} = 0.
Artinya :
  • Sebuah benda yang sedang diam akan tetap diam kecuali ada resultan gaya yang tidak nol bekerja padanya.
  • Sebuah benda yang sedang bergerak, tidak akan berubah kecepatannya kecuali ada resultan gaya yang tidak nol bekerja padanya.
Hukum pertama newton adalah penjelasan kembali dari hukum inersia yang sudah pernah dideskripsikan oleh Galileo. Dalam bukunya Newton memberikan penghargaan pada Galileo untuk hukum ini. Aristoteles berpendapat bahwa setiap benda memilik tempat asal di alam semesta: benda berat seperti batu akan berada di atas tanah dan benda ringan seperti asap berada di langit. Bintang-bintang akan tetap berada di surga. Ia mengira bahwa sebuah benda sedang berada pada kondisi alamiahnya jika tidak bergerak, dan untuk satu benda bergerak pada garis lurus dengan kecepatan konstan diperlukan sesuatu dari luar benda tersebut yang terus mendorongnya, kalau tidak benda tersebut akan berhenti bergerak. Tetapi Galileo menyadari bahwa gaya diperlukan untuk mengubah kecepatan benda tersebut (percepatan), tapi untuk mempertahankan kecepatan tidak diperlukan gaya. Sama dengan hukum pertama Newton : Tanpa gaya berarti tidak ada percepatan, maka benda berada pada kecepatan konstan.

Hukum kedua Newton

Hukum kedua menyatakan bahwa total gaya pada sebuah partikel sama dengan banyaknya perubahan momentum linier p terhadap waktu :
\mathbf{F} = \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}t} = \frac{\mathrm{d}(m\mathbf v)}{\mathrm{d}t},
Karena hukumnya hanya berlaku untuk sistem dengan massa konstan, variabel massa (sebuah konstan) dapat dikeluarkan dari operator diferensial dengan menggunakan aturan diferensiasi. Maka,
\mathbf{F} = m\,\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = m\mathbf{a},
Dengan F adalah total gaya yang bekerja, m adalah massa benda, dan a adalah percepatan benda. Maka total gaya yang bekerja pada suatu benda menghasilkan percepatan yang berbanding lurus.
Massa yang bertambah atau berkurang dari suatu sistem akan mengakibatkan perubahan dalam momentum. Perubahan momentum ini bukanlah akibat dari gaya. Untuk menghitung sistem dengan massa yang bisa berubah-ubah, diperlukan persamaan yang berbeda.
Sesuai dengan hukum pertama, turunan momentum terhadap waktu tidak nol ketika terjadi perubahan arah, walaupun tidak terjadi perubahan besaran. Contohnya adalah gerak melingkar beraturan. Hubungan ini juga secara tidak langsung menyatakan kekekalan momentum: Ketika resultan gaya yang bekerja pada benda nol, momentum benda tersebut konstan. Setiap perubahan gaya berbanding lurus dengan perubahan momentum tiap satuan waktu.
Hukum kedua ini perlu perubahan jika relativitas khusus diperhitungkan, karena dalam kecepatan sangat tinggi hasil kali massa dengan kecepatan tidak mendekati momentum sebenarnya.

Impuls

Impuls J muncul ketika sebuah gaya F bekerja pada suatu interval waktu Δt, dan dirumuskan sebagai
 \mathbf{J} = \int_{\Delta t} \mathbf F \,\mathrm{d}t .
Impuls adalah suatu konsep yang digunakan untuk menganalisis tumbukan.

Sistem dengan massa berubah

Sistem dengan massa berubah, seperti roket yang bahan bakarnya digunakan dan mengeluarkan gas sisa, tidak termasduk dalam sistem tertutup dan tidak dapat dihitung dengan hanya mengubah massa menjadi sebuah fungsi dari waktu di hukum kedua. Alasannya, seperti yang tertulis dalam An Introduction to Mechanics karya Kleppner dan Kolenkow, adalah bahwa hukum kedua Newton berlaku terhadap partikel-partikel secara mendasar. Pada mekanika klasik, partikel memiliki massa yang konstant. Dalam kasus partikel-partikel dalam suatu sistem yang terdefinisikan dengan jelas, hukum Newton dapat digunakan dengan menjumlahkan semua partikel dalam sistem:
\mathbf{F}_{\mathrm{total}} = M\mathbf{a}_\mathrm{pm}
dengan Ftotal adalah total gaya yang bekerja pada sistem, M adalah total massa dari sistem, dan apm adalah percepatan dari pusat massa sistem.
Sistem dengan massa yang berubah-ubah seperti roket atau ember yang berlubang biasanya tidak dapat dihitung seperti sistem partikel, maka hukum kedua Newton tidak dapat digunakan langsung. Persamaan baru digunakan untuk menyelesaikan soal seperti itu dengan cara menata ulang hukum kedua dan menghitung momentum yang dibawa oleh massa yang masuk atau keluar dari sistem:
\mathbf F + \mathbf{u} \frac{\mathrm{d} m}{\mathrm{d}t} = m {\mathrm{d} \mathbf v \over \mathrm{d}t}
dengan u adalah kecepatan dari massa yang masuk atau keluar relatif terhadap pusat massa dari obyek utama. Dalam beberapa konvensi, besar (u dm/dt) di sebelah kiri persamaan, yang juga disebut dorongan, didefinisikan sebagai gaya (gaya yang dikeluarkan oleh suatu benda sesuai dengan berubahnya massa, seperti dorongan roket) dan dimasukan dalam besarnya F. Maka dengan mengubah definisi percepatan, persamaan tadi menjadi
\mathbf F = m \mathbf a.
Hukum Kedua: Perubahan dari gerak selalu berbanding lurus terhadap gaya yang dihasilkan / bekerja, dan memiliki arah yang sama dengan garis normal dari titik singgung gaya dan benda.
Hukum ketiga Newton

Hukum ketiga : Untuk setiap aksi selalu ada reaksi yang sama besar dan berlawanan arah: atau gaya dari dua benda pada satu sama lain selalu sama besar dan berlawanan arah.
Benda apapun yang menekan atau menarik benda lain mengalami tekanan atau tarikan yang sama dari benda yang ditekan atau ditarik. Kalau anda menekan sebuah batu dengan jari anda, jari anda juga ditekan oleh batu. Jika seekor kuda menarik sebuah batu dengan menggunakan tali, maka kuda tersebut juga "tertarik" ke arah batu: untuk tali yang digunakan, juga akan menarik sang kuda ke arah batu sebesar ia menarik sang batu ke arah kuda.
Hukum ketiga ini menjelaskan bahwa semua gaya adalah interaksi antara benda-benda yang berbeda, maka tidak ada gaya yang bekerja hanya pada satu benda. Jika benda A mengerjakan gaya pada benda B, benda B secara bersamaan akan mengerjakan gaya dengan besar yang sama pada benda A dan kedua gaya segaris. Seperti yang ditunjukan di diagram, para peluncur es (Ice skater) memberikan gaya satu sama lain dengan besar yang sama, tapi arah yang berlawanan. Walaupun gaya yang diberikan sama, percepatan yang terjadi tidak sama. Peluncur yang massanya lebih kecil akan mendapat percepatan yang lebih besar karena hukum kedua Newton. Dua gaya yang bekerja pada hukum ketiga ini adalah gaya yang bertipe sama. Misalnya antara roda dengan jalan sama-sama memberikan gaya gesek.
Secara sederhananya, sebuah gaya selalu bekerja pada sepasang benda, dan tidak pernah hanya pada sebuah benda. Jadi untuk setiap gaya selalu memiliki dua ujung. Setiap ujung gaya ini sama kecuali arahnya yang berlawanan. Atau sebuah ujung gaya adalah cerminan dari ujung lainnya.
Secara matematis, hukum ketiga ini berupa persamaan vektor satu dimensi, yang bisa dituliskan sebagai berikut. Asumsikan benda A dan benda B memberikan gaya terhadap satu sama lain.
\sum \mathbf{F}_{a,b}  = - \sum \mathbf{F}_{b,a}
Dengan
Fa,b adalah gaya-gaya yang bekerja pada A oleh B, dan
Fb,a adalah gaya-gaya yang bekerja pada B oleh A.
Newton menggunakan hukum ketiga untuk menurunkan hukum kekekalan momentum, namun dengan pengamatan yang lebih dalam, kekekalan momentum adalah ide yang lebih mendasar (diturunkan melalui teorema Noether dari relativitas Galileo dibandingkan hukum ketiga, dan tetap berlaku pada kasus yang membuat hukum ketiga newton seakan-akan tidak berlaku. Misalnya ketika medan gaya memiliki momentum, dan dalam mekanika kuantum.
Contoh Soal:

Sebuah mobil mempunyai massa 3.000 kg. Dari keadaan diam mulai bergerak setelah 12 sekon kecepatan mobil mencapai 6 m/s. Hitunglah gaya yang bekerja pada mobil !

Penyelesaian:
Diketahui : m = 3 000 kg
vo = 0 m/s
vt = 6 m/s
t = 12 s

Ditanyakan : F = …… ?
Jawab : Mencari percepatan (a)

∆v
a = ---------
Δt

(6 – 0) m/s
a = ---------------
(12 – 0) s
a = 0,5 m/s2
Mencari gaya (F)
F = m . a
F = 3 000 kg . 0,5 m/s2
F = 1 500 N
Jadi gaya yang bekerja pada mobil adalah 1 500 N

{ 1 comments... Views All / Post Comment! }

Mahfuzh said...

koq g' ad gambar a gan...

Post a Comment